References

  1. Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., … & Chen, Z. S. (2022). Microbiota in health and diseases. Signal transduction and targeted therapy, 7(1), 135.‏ https://doi.org/10.1038/s41392-022-00974-4
  2. Chen, L., Wang, D., Garmaeva, S., Kurilshikov, A., Vila, A. V., Gacesa, R., … & Fu, J. (2021). The long-term genetic stability and individual specificity of the human gut microbiome. Cell, 184(9), 2302-2315. https://doi.org/10.1016/j.cell.2021.03.024
  3. Ogunrinola, G. A., Oyewale, J. O., Oshamika, O. O., & Olasehinde, G. I. (2020). The Human Microbiome and Its Impacts on Health. International journal of microbiology, 2020, 8045646. https://doi.org/10.1155/2020/8045646
  4. M. Noval Rivas et al. “A Microbiota Signature Associated with Experimental Food Allergy Promotes Allergic Sensitization and Anaphylaxis.” Journal of Allergy and Clinical Immunology 131, no. 1 (2013): 201–212. http://www.jacionline.org/article/S0091-6749(12)01694-6/abstract
  5. M. C. de Goffau et al. “Fecal Microbiota Composition Differs between Children with B-Cell Autoimmunity and Those Without.” Diabetes 62, no. 4 (2013): 1238–1244. http://diabetes.diabetesjournals.org/content/62/4/1238.
  6. A. Giongo et al. “Toward Defining the Autoimmune Microbiome for Type 1 Diabetes.” ISME Journal 5 (2011): 82–91. http://www.nature.com/ismej/journal/v5/n1/full/ismej201092a.html.
  7. S. Michail et al. “Alterations in the Gut Microbiome of Children with Severe Ulcerative Colitis.” Inflammatory Bowel Diseases 18, no. 10 (2012): 1799–1808. https://www.ncbi.nlm.nih.gov/pubmed/22170749
  8. Manichanh, C., Borruel, N., Casellas, F., & Guarner, F. (2012). The Gut Microbiota In IBD. Nature reviews Gastroenterology & hepatology, 9(10), 599. https://www.nature.com/articles/nrgastro.2012.152
  9. Noor, S. O., Ridgway, K., Scovell, L., Kemsley, E. K., Lund, E. K., Jamieson, C., … & Narbad, A. (2010). Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC gastroenterology, 10(1), 134. https://bmcgastroenterol.biomedcentral.com/articles/10.1186/1471-230X-10-134
  10. A. Keshavarzian et al. “Colonic Bacterial Composition in Parkinson’s Disease.” Movement Disorders 30, no. 10 (2015): 1351–1360. http://onlinelibrary.wiley.com/doi/10.1002/mds.26307/abstract.
  11. J. M. Hill et al. “Pathogenic Microbes, the Microbiome, and Alzheimer’s Disease (AD).” Frontiers in Aging Neuroscience 6 (2014): 127. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4058571/
  12. Ost, K. S., & Round, J. L. (2018). Communication Between the Microbiota and Mammalian Immunity. Annual review of microbiology, 72. https://doi.org/10.1146/annurev-micro-090817-062307
  13. Macpherson, A. J., de Aguero, M. G., & Ganal-Vonarburg, S. C. (2017). How nutrition and the maternal microbiota shape the neonatal immune system. Nature Reviews Immunology, 17(8), 508. https://doi.org/10.1038/nri.2017.58
  14. Corbin, K. D., Carnero, E. A., Dirks, B., Igudesman, D., Yi, F., Marcus, A., … & Smith, S. R. (2023). Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nature Communications, 14(1), 3161.‏ https://doi.org/10.1038/s41467-023-38778-x 
  15. Koren, O., Konnikova, L., Brodin, P., Mysorekar, I. U., & Collado, M. C. (2023). The maternal gut microbiome in pregnancy: implications for the developing immune system. Nature Reviews Gastroenterology & Hepatology, 1-11.‏ https://doi.org/10.1038/s41575-023-00864-2 
  16. Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The gut microbiota and inflammation: an overview. International journal of environmental research and public health, 17(20), 7618.‏ https://doi.org/10.3390/ijerph17207618 
  17. Lal, S., Kandiyal, B., Ahuja, V., Takeda, K., & Das, B. (2022). Gut microbiome dysbiosis in inflammatory bowel disease. Progress in Molecular Biology and Translational Science, 192(1), 179-204.‏ https://doi.org/10.1016/bs.pmbts.2022.09.003 
  18. Chibbar, R., & Dieleman, L. A. (2019). The gut microbiota in celiac disease and probiotics. Nutrients, 11(10), 2375.‏ https://doi.org/10.3390/nu11102375
  19. Wang, L., Alammar, N., Singh, R., Nanavati, J., Song, Y., Chaudhary, R., & Mullin, G. E. (2020). Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. Journal of the Academy of Nutrition and Dietetics, 120(4), 565-586.‏ https://doi.org/10.1016/j.jand.2019.05.015 
  20. Di Vincenzo, F., Del Gaudio, A., Petito, V., Lopetuso, L. R., & Scaldaferri, F. (2023). Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Internal and Emergency Medicine, 1-19.‏ https://doi.org/10.1007/s11739-023-03374-w 
  21. Wang, D. D., Nguyen, L. H., Li, Y., Yan, Y., Ma, W., Rinott, E., … & Huttenhower, C. (2021). The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature medicine, 27(2), 333-343.‏ https://doi.org/10.1038/s41591-020-01223-3 
  22. Attaye, I., Pinto-Sietsma, S. J., Herrema, H., & Nieuwdorp, M. (2020). A crucial role for diet in the relationship between gut microbiota and cardiometabolic disease. Annual Review of Medicine, 71, 149-161.‏ https://doi.org/10.1146/annurev-med-062218-023720 
  23. Chakaroun, R. M., Olsson, L. M., & Bäckhed, F. (2023). The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews Cardiology, 20(4), 217-235.‏ https://doi.org/10.1038/s41569-022-00771-0 
  24. Puricelli, C., Rolla, R., Gigliotti, L., Boggio, E., Beltrami, E., Dianzani, U., & Keller, R. (2022). The gut-brain-immune axis in autism spectrum disorders: a state-of-art report. Frontiers in Psychiatry, 12, 755171.‏ https://doi.org/10.3389/fpsyt.2021.755171 
  25. Lee, Y., & Kim, Y. K. (2021). Understanding the connection between the gut–brain axis and stress/anxiety disorders. Current psychiatry reports, 23, 1-7.‏ https://doi.org/10.1007/s11920-021-01235-x 
  26. Bear, T., Dalziel, J., Coad, J., Roy, N., Butts, C., & Gopal, P. (2021). The microbiome-gut-brain axis and resilience to developing anxiety or depression under stress. Microorganisms, 9(4), 723.‏ https://doi.org/10.3390/microorganisms9040723 
  27. Doifode, T., Giridharan, V. V., Generoso, J. S., Bhatti, G., Collodel, A., Schulz, P. E., … & Barichello, T. (2021). The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacological Research, 164, 105314.‏ https://doi.org/10.1016/j.phrs.2020.105314 
  28. Crawford, J., Liu, S., & Tao, F. (2022). Gut microbiota and migraine. Neurobiology of Pain, 11, 100090.‏ https://doi.org/10.1016/j.ynpai.2022.100090 
  29. Wong, Y. S., & Osborne, N. J. (2022). Biodiversity Effects on Human Mental Health via Microbiota Alterations. International journal of environmental research and public health, 19(19), 11882. https://doi.org/10.3390/ijerph191911882
  30. Bonaz, B., Bazin, T., & Pellissier, S. (2018). The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in neuroscience, 12, 49. https://doi.org/10.3389/fnins.2018.00049 
  31. LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., Van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology, 24(2), 160-168. https://www.sciencedirect.com/science/article/pii/S095816691200119X
  32. Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B- vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in genetics, 6, 148. https:// www.frontiersin.org/articles/10.3389/fgene.2015.00148/full
  33. Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFAs: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37-49.‏  https://doi.org/10.1017/S0029665120006916 
  34. Frost, G., Sleeth, M. L., Sahuri-Arisoylu, M., Lizarbe, B., Cerdan, S., Brody, L., … & Carling, D. (2014). The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature communications, 5, 3611. https://www.nature.com/articles/ncomms4611
  35. Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N. A., Donus, C., & Hardt, P. D. (2010). Microbiota and SCFAs in lean and overweight healthy subjects. Obesity,18(1),190-195. https://onlinelibrary.wiley.com/doi/ abs/10.1038/oby.2009.167
  36. Han, H., Yi, B., Zhong, R., Wang, M., Zhang, S., Ma, J., … & Zhang, H. (2021). From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome, 9(1), 1-16.‏ https://doi.org/10.1186/s40168-021-01093-y 
  37. Spragge, F., Bakkeren, E., Jahn, M. T., BN Araujo, E., Pearson, C. F., Wang, X., … & Foster, K. R. (2023). Microbiome diversity protects against pathogens by nutrient blocking. Science, 382(6676), eadj3502.‏ https://www.science.org/doi/10.1126/science.adj3502 
  38. Chen, T., Long, W., Zhang, C., Liu, S., Zhao, L., & Hamaker, B. R. (2017). Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota. Scientific reports, 7(1), 2594.‏ https://doi.org/10.1038/s41598-017-02995-4 
  39. Yeoh, Y.K., Sun, Y., Ip, L.Y.T. et al. Prevotella species in the human gut is primarily comprised of Prevotella copri, Prevotella stercorea and related lineages. Sci Rep 12, 9055 (2022). https://doi.org/10.1038/s41598-022-12721-4
  40. Jumpertz, R., Le, D. S., Turnbaugh, P. J., Trinidad, C., Bogardus, C., Gordon, J. I., & Krakoff, J. (2011). Energy- balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American journal of clinical nutrition, 94(1), 58-65.
  41. Flint, H. J., Scott, K. P., Louis, P., & Duncan, S. H. (2012). The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 9(10), 577.
  42. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P., & Forano, E. (2012). Microbial degradation of complex carbohydrates in the gut. Gut microbes, 3(4), 289-306.
  43. Mukherjee, A., Lordan, C., Ross, R. P., & Cotter, P. D. (2020). Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes, 12(1), 1802866. https://doi.org/10.1080/19490976.2020.1802866 
  44. Louis, P., & Flint, H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental microbiology, 19(1), 29-41.‏ https://doi.org/10.1111/1462-2920.13589 
  45. Parker, B. J., Wearsch, P. A., Veloo, A. C. M., & Rodriguez-Palacios, A. (2020). The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Frontiers in immunology, 11, 906. https://doi.org/10.3389/fimmu.2020.00906
  46. Parker, B.J.,Wearsch P.A., Veloo A.C.M, & Rodriguez-Palacios A. (2020). The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Frontiers in Immunology 11:906. https://doi.org/10.3389/fimmu.2020.00906  
  47. Fusco, W., Lorenzo, M. B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., … & Ianiro, G. (2023). Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15(9), 2211.‏ https://doi.org/10.3390/nu15092211 
  48. Song, W. S., Jo, S. H., Lee, J. S., Kwon, J. E., Park, J. H., Kim, Y. R., … & Kim, Y. G. (2023). Multiomics analysis reveals the biological effects of live Roseburia intestinalis as a high‐butyrate‐producing bacterium in human intestinal epithelial cells. Biotechnology Journal, 18(12), 2300180.‏ https://doi.org/10.1002/biot.202300180 
  49. Tamanai-Shacoori, Z., Smida, I., Bousarghin, L., Loreal, O., Meuric, V., Fong, S. B., … & Jolivet-Gougeon, A. (2017). Roseburia spp.: a marker of health?. Future microbiology, 12(2), 157-170.
  50. Cani, P.D., Depommier, C., Derrien, M. et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 19, 625–637 (2022). https://doi.org/10.1038/s41575-022-00631-9 
  51. Luo, Y., Lan, C., Li, H. et al. Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. npj Biofilms Microbiomes 8, 81 (2022). https://doi.org/10.1038/s41522-022-00338-4 
  52. Leylabadlo, H. E., Ghotaslou, R., Feizabadi, M. M., Farajnia, S., Moaddab, S. Y., Ganbarov, K., … & Kafil, H. S. (2020). The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial pathogenesis, 149, 104344.‏ https://doi.org/10.1016/j.micpath.2020.104344 
  53. Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., … & Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current opinion in microbiology, 16(3), 255-261.
  54. Fujimoto, T., Imaeda, H., Takahashi, K., Kasumi, E., Bamba, S., Fujiyama, Y., & Andoh, A. (2013). Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. Journal of gastroenterology and hepatology, 28(4), 613-619.
  55. Chen, J., & Vitetta, L. (2018). Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clinical colorectal cancer, 17(3), e541-e544.‏
  56. Liu, P., Wang, Y., Yang, G., Zhang, Q., Meng, L., Xin, Y., & Jiang, X. (2021). The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological research, 165, 105420.‏ https://doi.org/10.1016/j.phrs.2021.105420 
  57. Chen, J., & Vitetta, L. (2020). The role of butyrate in attenuating pathobiont-induced hyperinflammation. Immune network, 20(2).‏ https://doi.org/10.4110/in.2020.20.e15  
  58. Shin, Y., Han, S., Kwon, J., Ju, S., Choi, T. G., Kang, I., & Kim, S. S. (2023). Roles of short-chain fatty acids in inflammatory bowel disease. Nutrients, 15(20), 4466.‏ https://doi.org/10.3390/nu15204466 
  59. Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., & Thiele, I. (2015). Systematic genome assessment of B- vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in genetics, 6, 148.
  60. Lonsdale, D. (2012). Thiamin (e): the spark of life. In Water Soluble Vitamins (pp. 199-227). Springer, Dordrecht.
  61. Thornalley, P. J., Babaei-Jadidi, R., Al Ali, H., Rabbani, N., Antonysunil, A., Larkin, J., … & Bodmer, C. W. (2007). High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia, 50(10), 2164-2170.
  62. DiNicolantonio, J. J., Niazi, A. K., Lavie, C. J., O’keefe, J. H., & Ventura, H. O. (2013). Thiamine supplementation for the treatment of heart failure: a review of the literature. Congestive Heart Failure, 19(4), 214-222.
  63. Mazur-Bialy, A. I., & Poche- E,. (2016). HMGB1 inhibition during zymosan-induced inflammation: the potential therapeutic action of riboflavin. Archivum immunologiae et therapiae experimentalis, 64(2), 171-176.
  64. Bertollo, C. M., Oliveira, A. C. P., Rocha, L. T. S., Costa, K. A., Nascimento Jr, E. B., & Coelho, M. M. (2006). Characterization of the antinociceptive and anti-inflammatory activities of riboflavin in different experimental models. European journal of pharmacology, 547(1-3), 184-191.
  65. Said HM, Ross AC. Riboflavin. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2014:325-30.
  66. Di Lorenzo, C., Pierelli, F., Coppola, G., Grieco, G. S., Rengo, C., Ciccolella, M., … & Schoenen, J. (2009).Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology, 72(18), 1588-1594.
  67. MacKay, D., Hathcock, J., & Guarneri, E. (2012). Niacin: chemical forms, bioavailability, and health effects. Nutrition reviews, 70(6), 357-366.
  68. Aim-High Investigators. (2011). Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. New England Journal of Medicine, 365(24), 2255-2267.
  69. Blond, E., Rieusset, J., Alligier, M., Lambert-Porcheron, S., Bendridi, N., Gabert, L., … & Roth, H. (2014). Nicotinic acid effects on insulin sensitivity and hepatic lipid metabolism: an in vivo to in vitro study. Hormone and Metabolic Research, 46(06), 390-396.
  70. Rumberger, J. A., Napolitano, J., Azumano, I., Kamiya, T., & Evans, M. (2011). Pantethine, a derivative of vitamin B5 used as a nutritional supplement, favorably alters low-density lipoprotein cholesterol metabolism in low–to moderate–cardiovascular risk North American subjects: a triple-blinded placebo and diet-controlled investigation. Nutrition research, 31(8), 608-615.
  71. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. National Academies Press (US).
  72. Ebbing, M., Bønaa, K. H., Arnesen, E., Ueland, P. M., Nordrehaug, J. E., Rasmussen, K., … & Vollset, S. E. (2010). Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B- vitamin trials. Journal of internal medicine, 268(4), 367-382.
  73. Vutyavanich, T., Wongtra-ngan, S., & Ruangsri, R. A. (1995). Pyridoxine for nausea and vomiting of pregnancy: a randomized, double-blind, placebo-controlled trial. American journal of obstetrics and gynecology, 173(3), 881-884.
  74. Sahakian, V., Rouse, D. W. I. G. H. T., Sipes, S. U. S. A. N., Rose, N., & Niebyl, J. (1991). Vitamin B6 is effective therapy for nausea and vomiting of pregnancy: a randomized, double-blind placebo-controlled study. Obstetrics and gynecology, 78(1), 33-36.
  75. National Institutes of Health. Dietary Supplement Label Database . 2017
  76. Sedel, F., Papeix, C., Bellanger, A., Touitou, V., Lebrun-Frenay, C., Galanaud, D., … & Tourbah, A. (2015). High doses of biotin in chronic progressive multiple sclerosis: a pilot study. Multiple sclerosis and related disorders, 4(2), 159-169.
  77. Weir, D. G., & Scott, J. M. (1999). Brain function in the elderly: role of vitamin B12 and folate. British medical bulletin, 55(3), 669-682.
  78. Kim, S., Choi, B. Y., Nam, J. H., Kim, M. K., Oh, D. H., & Yang, Y. J. (2018). Cognitive impairment is associated with elevated serum homocysteine levels among older adults. European journal of nutrition, 1-10.
  79. Morris, M. S., Fava, M., Jacques, P. F., Selhub, J., & Rosenberg, I. H. (2003). Depression and folate status in the US population. Psychotherapy and psychosomatics, 72(2), 80-87.
  80. Kim, Y. I. (2004). Will mandatory folic acid fortification prevent or promote cancer?. The American journal of clinical nutrition, 80(5), 1123-1128.
  81. He, H., & Shui, B. (2014). Folate intake and risk of bladder cancer: a meta-analysis of epidemiological studies. International journal of food sciences and nutrition, 65(3), 286-292.
  82. Bernard, M. A., Nakonezny, P. A., & Kashner, T. M. (1998). The effect of vitamin B12 deficiency on older veterans and its relationship to health. Journal of the American Geriatrics Society, 46(10), 1199-1206.
  83. Syed, E. U., Wasay, M., & Awan, S. (2013). Vitamin B12 supplementation in treating major depressive disorder: a randomized controlled trial. The open neurology journal, 7, 44.
  84. Zhang, M., Han, W., Hu, S., & Xu, H. (2013). Methylcobalamin: a potential vitamin of pain killer. Neural plasticity, 2013.
  85. Al Bander, Z., Nitert, M. D., Mousa, A., & Naderpoor, N. (2020). The Gut Microbiota and Inflammation: An Overview. International journal of environmental research and public health, 17(20), 7618. https://doi.org/10.3390/ijerph17207618 
  86. Shan, Y., Lee, M., & Chang, E. B. (2022). The Gut Microbiome and Inflammatory Bowel Diseases. Annual review of medicine, 73, 455–468.
  87. Hou, K., Wu, ZX., Chen, XY. et al. Microbiota in health and diseases. Sig Transduct Target Ther 7, 135 (2022). https://doi.org/10.1038/s41392-022-00974-4
  88. Valdes A M, Walter J, Segal E, Spector T D. Role of the gut microbiota in nutrition and health BMJ 2018; 361 :k2179 doi:10.1136/bmj.k2179
  89. Holscher H. D. (2017). Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut microbes, 8(2), 172–184. https://doi.org/10.1080/19490976.2017.1290756
  90. Lopez, D. E. G., Lashinger, L. M., Weinstock, G. M., & Bray, M. S. (2021). Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metabolism, 33(5), 873-887.‏ https://doi.org/10.1016/j.cmet.2021.03.015 
  91. National Institutes of Health.(2023, Nov). Probiotics. U.S. Department of Health & Human Services, National Institutes of Health. https://ods.od.nih.gov/factsheets/Probiotics-HealthProfessional/
  92. Shen, Z. H., Zhu, C. X., Quan, Y. S., Yang, Z. Y., Wu, S., Luo, W. W., Tan, B., & Wang, X. Y. (2018). Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World journal of gastroenterology, 24(1), 5–14. https://doi.org/10.3748/wjg.v24.i1.5
  93. Stojanov S, Berlec A, Štrukelj B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms. 2020; 8(11):1715. https://doi.org/10.3390/microorganisms8111715
  94. Sun, Y., Zhang, S., Nie, Q., He, H., Tan, H., Geng, F., … & Nie, S. (2023). Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Critical reviews in food science and nutrition, 63(33), 12073-12088.‏ https://doi.org/10.1080/10408398.2022.2098249 
  95. Hjorth, M. F., Roager, H. M., Larsen, T. M., Poulsen, S. K., Licht, T. R., Bahl, M. I., Zohar, Y., & Astrup, A. (2018). Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. International journal of obesity (2005), 42(3), 580–583. https://doi.org/10.1038/ijo.2017.220
  96. Hjorth, M.F., Blædel, T., Bendtsen, L.Q. et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes 43, 149–157 (2019). https://doi.org/10.1038/s41366-018-0093-2
  97. Mukherjee, A., Lordan, C., Ross, R. P., & Cotter, P. D. (2020). Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut microbes, 12(1), 1802866. https://doi.org/10.1080/19490976.2020.1802866
  98. La Rosa, S.L., Leth, M.L., Michalak, L. et al. The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans. Nat Commun 10, 905 (2019). https://doi.org/10.1038/s41467-019-08812-y
  99. Kumar, R., Kane, H., Wang, Q., Hibberd, A., Jensen, H. M., Kim, H. S., Bak, S. Y., Auzanneau, I., Bry, S., Christensen, N., Friedman, A., Rasinkangas, P., Ouwehand, A. C., Forssten, S. D., & Hasselwander, O. (2022). Identification and Characterization of a Novel Species of Genus Akkermansia with Metabolic Health Effects in a Diet-Induced Obesity Mouse Model. Cells, 11(13), 2084. https://doi.org/10.3390/cells11132084 
  100. Xue C, Li G, Gu X, Su Y,Zheng Q, Yuan X, Bao Z, Lu J, Li L.Health and Disease: Akkermansia muciniphila, the Shining Star of theGut Flora. Research 2023;6:Article0107. https://doi.org/10.34133/research.0107
  101. Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., … & De Vos, W. M. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences, 110(22), 9066-9071.
  102. Kartjito, M. S., Yosia, M., Wasito, E., Soloan, G., Agussalim, A. F., & Basrowi, R. W. (2023). Defining the Relationship of Gut Microbiota, Immunity, and Cognition in Early Life-A Narrative Review. Nutrients, 15(12), 2642. https://doi.org/10.3390/nu15122642
  103. V. K. Ridaura et al. “Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice.” Science 341, no. 6150 (2013). http://science.sciencemag.org/content/341/6150/1241214.
  104. Russell, W. R., Hoyles, L., Flint, H. J., & Dumas, M. E. (2013). Colonic bacterial metabolites and human health. Current opinion in microbiology, 16(3), 246-254. https://doi.org/10.1016/j.mib.2013.07.002 
  105. Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2017). Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition, 1-24.
Ready to get started?
Get in touch